Pendekatan Open-Ended - Pembelajaran Matematika di Indonesia
Uraian tentang pendekatan Open-Ended yang disajikan berikut ini dikembangkan berdasarkan tulisan Becker dan Shimada (1997) berjudul The OpenEnded Approach: A New Proposal for Teaching Mathematics. Antara tahun 1971 dan 1976 para ahli pendidikan matematika Jepang melakukan serangkaian penelitian yang berfokus pada pengembangan metoda evaluasi untuk mengukur keterampilan berpikir tingkat tinggi dalam pendidikan matematika. Rangkaian penelitian tersebut adalah sebagai berikut:(1) Studi pengembangan metoda evaluasi dalam pendidikan matematika, tahun 1971,
(2) Studi pengembangan metoda evaluasi dan analisis pengaruh faktor-faktor belajar dalam pendidikan matematika, tahun 1972-1973, dan
(3) Studi pengembangan metoda evaluasi untuk mengukur kemampuan siswa dalam keterampilan berpikir matematik tingkat tinggi, tahun 1974-1976.
Pada tahap pertama dari serangkaian studi yang dilakukan, perhatian difokuskan pada penelaahan efektivitas penggunaan open-ended problems sebagai suatu metoda evaluasi untuk mengukur keterampilan berpikir matematik tingkat tinggi. Karena hasilhasil penelitian yang dilakukan menunjukkan bahwa penggunaan open-ended problems ternyata mengandung potensi yang sangat besar untuk meningkatkan kualitas pembelajaran matematika, maka selanjutnya dilakukan sintesis terhadap semua hasil penelitian di atas sehingga dihasilkan sebuah buku yang bisa dibaca secara luas oleh masyarakat pendidikan matematika internasional.
Dalam bagian buku tersebut dijelaskan, pembelajaran matematika tradisional antara lain bercirikan bahwa soal-soal yang dikembangkan baik dalam buku ajar maupun yang disajikan dalam proses pembelajaran biasanya hanya memiliki jawaban benar yang tunggal. Dengan demikian jawaban siswa hanya berkisar pada dua kemungkinan yakni benar atau salah. Masalah seperti ini selanjutnya disebut sebagai masalah tertutup (close problems). Suatu masalah yang diformulasikan sedemikian sehingga memiliki kemungkinan variasi jawaban benar baik dari aspek cara maupun hasilnya disebut masalah open-ended. Dalam proses pembelajaran, manakala siswa dihadapkan pada suatu masalah dan mereka diminta untuk mengembangkan metoda, cara, atau pendekatan yang berbeda-beda dalam upaya memperolah jawaban benar, maka mereka sebenarnya berhadapan dengan masalah yang bersifat open-ended. Dalam kasus tersebut, siswa tidak hanya diminta untuk menentukan suatu jawaban yang benar atas soal yang diberikan melainkan juga diminta untuk menjelaskan bagaimana caranya sampai pada jawaban benar tersebut.
Pengembangan ide digunakannya pendekatan open-ended diawali dari adanya keinginan untuk mengevaluasi kemampuan berfikir tingkat tinggi siswa dalam matematika. Dalam pembelajaran matematika, serangkaian pengetahuan, keterampilan, konsep, prinsip, atau aturan biasanya disajikan secara bertahap. Penyajian secara bertahap ini bukan dimaksudkan untuk menunjukkan bahwa satu topik lebih penting dari topik lainnya atau mencoba memisahkan tiap konsep dari konsep lainnya. Hal tersebut dilakukan dengan maksud untuk membangun suatu pemahaman secara gradualbertahap yang pada ahirnya menuju pada pemahaman yang lebih terintegrasi. Untuk mengetahui sejauh mana pemahaman yang sudah dicapai, khususnya menyangkut kemampuan berpikir tingkat tingginya, maka diperlukan cara mengevaluasi yang lebih bersifat tidak rutin sebagaimana soal-soal yang biasa muncul dalam buku ajar, ulangan harian, atau ujian. Berdasarkan hasil-hasil penelitian yang dilakukan, diperoleh suatu kesimpulan umum antara lain bahwa tujuan pembelajaran tingkat tinggi dimungkinkan untuk dikembangkan melalui pendekatan yang bersifat open-ended. Perkembangan perolehan komponen-komponen pengetahuan dan keterampilan yang berguna untuk mencapai
tujuan pembelajaran tingkat tinggi, tidak hanya tergantung pada kemampuan bawaan siswa (talenta), akan tetapi juga sangat dipengaruhi secara signifikan oleh model pembelajaran yang dikembangkan guru khususnya yang mampu menciptakan kesempatan dan dorongan bagi siswa untuk berkembang.
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment