Upaya Peningkatan Kemampuan Berpikir Matematik Tingkat Tinggi
Upaya peningkatan kemampuan berpikir matematik tingkat tinggi, Henningsen dan Stein (1997) mengemukakan beberapa aktivitas bermatematika (doing mathematics) yang mendukung yaitu: mencari dan mengeksplorasi pola untuk memahami struktur matematik serta hubungan yang melandasinya; menggunakan bahan yang tersedia secara tepat dan efektif pada saat memformulasikan dan menyelesaikan masalah; menjadikan ide-ide matematik secara bermakna; berfikir serta beralasan dengan cara yang fleksibel; mengembangkan konjektur, generalisasi, jastifikasi, serta mengkomunikasikan ide-ide matematik.Mengembangkan serta mengimplementasikan bahan ajar yang memuat tugas tugas matematik yang sesuai sehingga memungkinkan anak menggunakan kemampuan berpikir tingkat tingginya secara aktif dipandang sangat sulit baik bagi guru maupun peneliti pendidikan matematika secara umum. Hal ini sesuai dengan pendapat Doyle (dalam Henningsen dan Stein, 1997) yang menyatakan bahwa “Such engagement can evoke in students a desire for a reduction in task complexity that, in turn, can lead them to presure teachers to further specify the procedures for completing the task or to relax accountability requirements” (h.526). Namun demikian, Fraivillig, & Fuson (1999) berkeyakinan bahwa melalui pengungkapan metoda penyelesaian yang dibuat siswa, mendorong pemahaman konseptual mereka, serta dengan mengembangkan kemampuan berpikir matematik mereka, kemampuan berpikir matematik anak dapat ditingkatkan secara efektif. Dengan demikian, penggunaan tugas matematik atau bahan ajar tertentu bersamaan dengan penerapan kerangka kerja dari Fraivillig dan Fuson sangat mungkin untuk dikembangkan serta diimplementasikan.
Dalam pengembangan model pembelajaran yang kondusif untuk meningkatkan kemampuan berpikir matematik tingkat tinggi, setting kelas (classroom setting) memegang peranan yang sangat penting. Menurut Good, dkk. (1992), jika guru bermaksud mendorong siswa agar berhasil dengan baik dalam pemecahan suatu masalah, maka langkah pertama yang harus diusahakan adalah mendorong mereka menjadi pebelajar yang adaptif. Sementara karakteristik pebelajar seperti ini antara lain dapat dicapai secara efektif melalui kegiatan pemecahan masalah (problem-solving). Berdasarkan sebuah riviu hasil penelitian yang berfokus pada penggunaan small-group cooperative learning dalam pembelajaran matematika, Good, dkk. (1992) menyimpulkan bahwa kegiatan pemecahan masalah dapat digunakan untuk proses belajar adaptif melalui kerjasama kelompok. Untuk itu mereka mengemukakan argumentasi bahwa:
(1) pertukaran (exchange) dalam kerja kelompok dapat menstimulasi siswa untuk aktif dalam berpikir tingkat tinggi,
(2) keberagaman dalam kerja kelompok dapat mendorong terjadinya akomodasi berbagai opini anggota kelompok dan karenanya siswa akan berusaha berpikir secara aktif dalam proses penyelesaian masalah yang dihadapi,
(3) kerja kelompok mampu memberikan kesempatan pada siswa untuk menyampaikan pendapatnya secara lisan serta mencoba mengintegrasikan pendapat yang berkembang dalam diskusi, dan
(4) dimungkinkan terjadinya saling bantu di antara anggota kelompok untuk mencapai suatu tahap pemahaman (h.176).
Hasil pengkajian yang dilakukan oleh Brophy dan Good (1986) tentang penelitian yang berkaitan dengan efektivitas pembelajaran matematika antara lain menyimpulkan bahwa model pembelajaran langsung (direct instruction) merupakan cara yang paling efektif untuk mengembangkan keterampilan prosedural seperti keterampilan melakukan operasi perkalian dan pembagian . Dalam hasil pengkajian tersebut dijelaskan bahwa dalam pembelajaran cara langsung, guru menyiapkan serta menyajikan materi kepada siswa, membantu mereka untuk mengaitkannya dengan pengetahuan yang sudah dimiliki, melakukan monitoring terhadap hasil belajar secara sistematik, dan menyediakan koreksi balikan selama melakukan aktivitas belajar. Dalam model pembelajaran seperti ini, guru berperan sebagai figur sentral di kelas dalam melakukan monitor seluruh aktivitas serta mengendalikan prilaku dan kegiatan akademik siswa sehingga keterlibatan mereka dalam proses belajar dapat berjalan secara optimal.
Walaupun pembelajaran cara langsung terbukti sangat efektif untuk meningkatkan kemampuan berpikir matematik tingkat rendah yakni yang bersifat prosedural, akan tetapi jika diterapkan pada pembelajaran yang bertujuan untuk meningkatkan kemampuan berpikir matematik tingkat tinggi belum ada bukti yang meyakinkan tentang efektivitas pendekatan tersebut. Sejumlah hasil penelitian menunjukkan bahwa pendekatan pembelajaran yang bersifat tidak langsung serta memberikan otonomi lebih luas kepada siswa dalam belajar diyakini dapat meningkatkan kemampuan berpikir matematik tingkat tinggi. Sebagai contoh, penelitian Peterson (1988) antara lain menemukan bahwa model pembelajaran cara langsung telah berhasil meningkatkan prestasi belajar siswa dalam kaitannya dengan kemampuan berpikir matematik tingkat rendah. Sedangkan untuk soal-soal yang berkaitan dengan kemampuan tingkat tinggi seperti pemecahan masalah, siswa pada umumnya menunjukkan hasil belajar yang kurang baik. Hasil serupa ditunjukkan dalam studi Peterson dan Fennema (1985) yang berhasil menemukan bahwa tipe aktivitas tertentu yang dikembangkan melalui pembelajaran langsung (direct instruction) lebih cocok untuk meningkatkan kemampuan berpikir tingkat rendah, sementara tipe aktivitas belajar lainnya yang dikembangkan melalui pembelajaran tidak langsung lebih berhasil meningkatkan kemampuan berpikir matematik tingkat tinggi siswa.
Berdasarkan riviu terhadap hasil-hasil penelitian tentang psikologi kognitif, Doyle (dalam Peterson, 1988) menyarankan bahwa untuk tujuan peningkatan kemampuan berpikir matematik tingkat tinggi, penggunaan pendekatan pembelajaran tidak langsung yang didasarkan pada makna dan pemahaman lebih dianjurkan untuk digunakan. Rasional yang dikemukakan untuk mengajukan saran tersebut antara lain bahwa penemuan sendiri (self-discovery) merupakan hal sangat penting bagi siswa untuk memperoleh makna dan pemahaman tentang tugas-tugas akademiknya dalam belajar matematika. Aktivitas akademik hendaknya disusun berlandaskan pada apa yang sudah diketahui serta bagaimana siswa memproses informasi yang sudah diketahuinya dalam matematika. Namun demikian, dalam hal aktivitas belajar sebaiknya tidak dirancang terlalu terstruktur, dengan harapan agar siswa memperoleh kesempatan untuk mengalami pengolahan materi secara langsung dan aktif sehingga mereka mampu menurunkan generalisasi serta menemukan algoritmanya sendiri.
Hasil-hasil penelitian dalam bidang psikologi kognitif antara lain didasarkan pada asumsi bahwa pengetahuan dan pemahaman dikonstruksi oleh anak, dan dengan demikian muncul suatu pandangan bahwa dalam belajar konsep dan keterampilan matematika, anak dapat secara aktif melakukan konstruksi pengetahuan dan pemahamannya. Dalam studi Carpenter, Hiebert, dan Moser (dalam Peterson, 1988) tentang soal cerita yang memuat penjumlahan dan pengurangan di sekolah dasar, misalnya, antara lain ditemukan bahwa anak telah berhasil melakukan analisis serta menyelesaikan masalah yang diberikan dengan menggunakan model informal dan strategi perhitungan menurut cara mereka sendiri. Pengetahuan informal ini ternyata dapat menjadi jembatan bagi anak untuk menggunakannya sebagai landasan dalam mengembangkan pemahaman konsep dan keterampilan serta pemahaman matematika secara lebih bermakna. Studi yang dilakukan Suryadi (2001) di sekolah dasar kelas dua juga menunjukkan hasil serupa. Dalam studi tersebut antara lain ditemukan bahwa anak yang sudah memiliki pengetahuan dan keterampilan penjumlahan dan pengurangan dengan menggunakan model informal ternyata mampu menggunakannya secara efektif untuk menyelesaikan soal cerita yang memuat pembagian, padahal mereka belum mempelajari konsep tersebut. Yang menarik dari hasil penelitian ini, bahwa strategi yang digunakan siswa untuk memperoleh hasil pembagian ternyata sangat bervariasi antara lain mencakup penerapan strategi penjumlahan, strategi pengurangan, dan strategi gambar atau model informal.
Salah satu implikasi dari hasil-hasil penelitian tentang ilmu kognitif dalam pembelajaran matematika adalah bahwa proses pembelajaran seharusnya lebih menekankan pada makna dan pemahaman sejak usia sekolah dasar. Dalam hal ini Peterson (1988) menyarankan bahwa untuk memberikan penekanan pada makna dan pemahaman tersebut serta untuk mengembangkan kemampuan berpikir dengan tingkat yang lebih tinggi, maka pemecahan masalah dalam matematika tidak hanya merupakan bagian terintegrasi dalam pembelajaran, melainkan harus menjadi dasar atau inti dari kegiatan pembelajaran. Namun demikian, kenyatannya di lapangan menunjukkan bahwa keterampilan berhitung harus diajarkan lebih dahulu sebelum pemecahan masalah atau soal cerita diberikan.
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment